## PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

## II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023

 SIGNALS AND SYSTEMS(ECE BRANCH)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

| Q.No. |  | Questions | Marks | CO | KL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT-I |  |  |  |  |  |
| 1. | a) | Determine whether the corresponding system is linear, time invariant or both. (i) $y(t)=t^{2} x(t-3)$ (ii) $y[n]=x^{2}[n-1]$ | [7M] | 1 |  |
|  | b) | Discuss about various classification of signals and systems. | [7M] | 1 |  |
| OR |  |  |  |  |  |
| 2. | a) | List and explain the various operations on signals with suitable examples. | [7M] | 1 |  |
|  | b) | Determine whether the following systems are time-invariant or time-variant: (i) $y(t)=2 t^{2} x(t) \wedge(i i) y(t)=3 e^{3} x(t)$ | [7M] | 1 |  |
| UNIT-II |  |  |  |  |  |
| 3. | a) | Explain about the signal approximation using orthogonal functions and Mean square error function. | [7M] | 2 |  |
|  | b) | Discuss the Fourier series representation of continuous time periodic signals. Also, list the Dirichlet's conditions. | [7M] | 2 |  |
| OR |  |  |  |  |  |
| 4. | a) | Explain the orthogonality in complex functions with suitable expressions and examples. | [7M] | 2 |  |
|  | b) | Determine the trigonometric Fourier series expansion for signal shown below. | [7M] | 2 |  |
| UNIT-III |  |  |  |  |  |
| 5. | a) | Compute the Fourier Transform of the following signals. $i \measuredangle \times 1(t)=t e^{-a t} u(t) i i \measuredangle \times 2(t)=e^{a t} u(-t)$ | [7M] | 3 |  |
|  | b) | With neat sketches, illustrate the effect aliasing on signal reconstruction. | [7M] | 3 |  |
| OR |  |  |  |  |  |
| 6. | a) | Compute the Fourier Transform of $x(t)=\operatorname{sgn}(t)$ | [7M] | 3 |  |
|  | b) | State and prove the sampling theorem for band-limited signals. | [7M] | 3 |  |
| UNIT-IV |  |  |  |  |  |
| 7. | a) | Find the convolution of the following signals: $x(t)=r(t) \wedge h(t)=e^{-2 t} u(t)$ using graphical method | [7M] | 4 |  |
|  | b) | State and prove Parseval's theorem for energy signals. | [7M] | 4 |  |

OR


